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min{Wi(TK)] T e SLn} and show that bodies which appear as solutions 

of such problems satisfy isotropic conditions or even admit an isotropic 
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known positions of convex bodies which play an important role in the 
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ones. We provide new applications of this point of view for the minimal 
mean width position. 
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1. I n t r o d u c t i o n  

Given a convex body K in ll( n we consider the family {TK I T E SLn} of its po- 
sitions. One of the main problems in the asymptotic theory of finite dimensional 

normed spaces is introducing the right position of the unit ball Kx of a space 

X. There exist many well-known positions which have been introduced and used 

for different purposes in this theory: John's position, the g-position, M-positions 

are among them (see [MSchl], [Pi2] and [TJ] for a description and important  

applications). Because of the isomorphic nature of the results of the asymptotic 

theory, an isomorphic point of view dominates the study of these special positions 

as well. Even the definition of some of them (the M-position is such an example) 

is done in isomorphic form. 

The purpose of this paper is to discuss the possibility of an isometric approach 

to these questions. The standard isotropic position of a convex body provides a 

good example for our point of view: 

Let K be a convex body in ~ with centroid at the origin and volume equal 

to one. We say that K is in i so t rop ic  pos i t i on  if 

K(X, O)2dx = L2K 

for every 0 E S =-1. It is not hard to see that every body K of volume one has 

a position which is isotropic. Moreover, this position is uniquely determined up 

to an orthogonal transformation. Therefore, LK is an affine invariant which is 

called the i so t rop i c  c o n s t a n t  of K. 

The isotropic position is well studie~l and has several connections with classical 

convexity problems (see IMP1]). In particular, the question if L g  < c for some 

absolute positive constant and every body K is a major open problem. The 

starting point of our present discussion is the following remark: 

FACT I: A body K is isotropic if and only if fK Ix[ 2dx <- STK txI 2dx for every 

T E SLn, where ]. ] is the standard Euclidean norm. 

The proof of the "if" part is given by a simple variational argument: If T E 

L(II(n) and E > 0 is small enough, then (I + cT) / [de t ( I  + eT)] 1/n is volume 

preserving, therefore 

/K Ix + eTxl2dx > [det(I + ~T)] 2/n /K Ixl2dx" (1) 

Writing Ix + eTxl 2 = txl 2 + 2~(x, Tx) + O(¢ 2) and 

2~ t rT  [det(I + ET)] 2/n = 1 + + O(~2), 
n 
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and letting e -+ 0 + we get 

(2) /K(X'Tx)dx >tr_Tn/K 'x'2dx' 

and replacing T by - T  we see that  there must be equality in (2) for every 

T C L(it(n). This in turn implies that  K is isotropic. 

Starting with the functional T --+ f(TK) = fTK Ixl 2dx on SLn we saw that  its 

minimum is achieved on some isotropic position (for the Lebesgue measure on 

K).  In this paper  we show that  this is a general scheme which produces isometric 

descriptions for many classical positions of the theory. 

As a second example, we mention the minimal surface area position: Let K be 

a convex body, and write O(K) for its surface area. We say that  K has m i n i m a l  

s u r f a c e  a r e a  if O(K) <_ O(TK) for every T c SLn. 

A characterization of the minimal surface area position was given by Pet ty 

([Pe], see also [GP]): 

FACT II:  A convex body K has minimal surface area if and only if 

(3) f (u, O)~,~K (du) 
0(K) 

I 

Js n - - 1  n 

for every 0 E S n - 1  where CrK is the area measure of K.  

Recall that  the area measure crK of K is defined on S '~-1 by 

(4) aK(A) = u({x E bd(K):  the outer normal to K at x is in A}), 

where v is the (n - 1)-dimensional surface measure on K.  The key point for the 

proof of the fact is the observation that,  for every T E SLn, 

(5) ( 9 ( ( T - 1 ) * K )  ---- fs~-1 ITxl~K(dX). 

Then, we employ a variational argument identical to the one used for Fact I. 

One can also check that  the minimal surface position is unique up to orthogonal 

transformations (see [GP] for the details). 

In view of the above result we give the following definition: 

De~nition: A Borel measure # on S n-1 will be called i s o t r o p i c  if 

(6) ~s~-' <u, O>2#(du) - #(S'~-')n 

for every O E S n-1. 
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In this terminology, a body K has minimal surface area if and only if its area 

measure is isotropic: The minimum of the functional T -+ O(TK), T C SL,~ 

is again achieved on an isotropic position (for the appropriate measure on the 

sphere). 

Surface area is one of the quermassintegrals Wi(K) of the body K (see Section 

2 for notation and definitions). We consider the minimization problems 

(7) min{Wi(rg) l  r e SLy}, i = 1 , . . . , n -  1. 

In every case, a necessary condition for the minimal position is that  the cor- 

responding mixed area measure S, - i (K,  .) should be isotropic (see Section 4). 

In particular, in Section 3 we find a necessary and sufficient condition for the 

minimal mean width position: a body K has minimal mean width if and only if 

~ ,~_~ hg(u)(u, O}2(7(du) 

does not depend on 0 E S n-l, where h g  is the support  function of K and a is 

the rotationally invariant probability measure on the sphere. In the symmetric  

case, using a classical estimate of Pisier [Pill (after work of Lewis [L] and Figiel 

and Tomczak-Jaegermann [FT]) we see that  isotropicity of the measure hgda 
implies the inequality 

(8) f~n--1 hK(u)cr(du) _< clog d(ZK,g~) (\ lDnl ~l/n 
In Section 5 we see the maximal volume ellipsoid position (John's position) as 

a solution of the problem 

(9) min{IIT: g'~ --~ XKIll T e SL,~}. 

Using the same general method we give a simple proof of John's  theorem in its 

full strength. In our present setting, John's  representation of the identity may be 

interpreted as an isotropic condition: a symmetric body K is in John 's  position 

if and only if there is an isotropic measure supported by its contact points with 

the inscribed ball. 

Finally, in Section 6 we show that  M-position may also be described in an 

isometric way. If IK[ = [D,I, we study the problem 

(10) m i n { ] r K  +Dnl [  T C SL.} 

and show that  if K is a solution, then K + Dn must have minimal surface area. 

In view of Pet ty ' s  result, this opens the possibility of an isotropic M-position. 
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K. Ball [Bal,2,3] realized that John's representation of the identity could be 

combined with the Brascamp-Lieb inequality. This led him to sharp bounds for 

the volume ratio, the volume of the central sections of the cube, and an exact 

reverse isoperimetric inequality. The reverse Brascamp-Lieb inequality [Bar] has 

been recently applied for an estimate of the volume of the central sections of the 

difference body of a non-symmetric body [Ru]. Petty 's  isotropic description of 

the minimal surface area position (combined with the Brascamp-Lieb inequality) 

leads to sharp inequalities for the volume of the projection body and its polar 

in terms of the minimal surface parameter [GP]. All these results show that the 

general isotropic point of view we propose in this paper might help towards a 

new understanding of several isomorphic results of the theory. 

2. De f in i t i ons  a n d  p r e l i m i n a r i e s  

We first recall some facts about mixed volumes and mixed area measures. For 

detailed proofs we refer the reader to [Sch]. 

2.1. Let )~n denote the set of all non-empty, compact convex subsets of IR =. 

We may view ]Cn as a convex cone under Minkowski addition and multiplication 

by nonnegative real numbers. Minkowski's theorem (and the definition of the 

mixed volumes) asserts that  if K1 , . . .  ,Kin E ~ n , m  E N, then the volume of 

t lK1 + ".. + tmKm is a homogeneous polynomial of degree n in ti > 0. That  is, 

(1) I t lg l  + "'" + t m g m l  = ~ Y (Ki~ , . . .  ,Ki~)ti~ . . . t i~ ,  
l~_il~..,#n~m 

where the coefficients V ( K i l , . . .  , Kin) are chosen to be invariant under permu- 

tations of their arguments. The coefficient V(K1 , . . .  ,Kn) is called the mixed 

volume of K 1 , . . . ,  K~. 

2.2. Steiner's formula may be seen as a special case of Minkowski's theorem. 

The volume of K + tDn, t > 0, can be expanded as a polynomial in t: 

(2) IK + tDnl = i w i ( g ) t  , 
i=0 

where Wi(K)  = V ( K ; n  - i ,Dn;i)  is the i-th quermassintegral of K.  Here and 

elsewhere we use the notation L; j for L , . . . ,  L j-times. The quermassintegrals 

inherit properties of mixed volumes: they are monotone, continuous with respect 

to the Hausdorff metric, and homogeneous of degree n - i. 
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2.3. The mixed area measures were introduced by Alexandrov [All,2] and may 

be viewed as a local generalization of the mixed volumes. For any (n - 1)- 

tuple C = K 1 , . . . ,  K ~ - I  E/Cn, the Riesz representation theorem guarantees the 

existence of a Borel measure S(C, .) on the unit sphere S n-1 such that  

(3) V(L, K1,... ,K~_I) = -nl /~n_l hL(u)dS(C,u) 

for every L E K:~, where hL is the support function of L. The local analogue of 

Minkowski's theorem is 

(4) 
m 

S,~-I ( E tiKi,w) -- E S(Ki~,...,Ki~_~,w)ti~ ""ti~_~ 
i~1  l ~_il , . . . ,in ~_m 

for all Borel w C_ S n - l ,  t i > O , K  i E )I~n, m E N (see below for the definition of 

The  j-th area measure of K is defined by Sj(K, .) = S(K;j, D~; n - j - 1, .), 
j -- 0, 1 , . . . ,  n - 1. It  follows that  the quermassintegrals of K can be represented 

by 

(5) wi(g)=-nl ~8~-lhK(u)dS~-i-l(g'u)' i = 0 , 1 , . . . , n - 1  

or, alternatively, 

(6) Wi(K)=-nl /s~_,dS~_i(K,u), i= l , . . . ,n .  

2.4. Let Ki E )En and assume for simplicity that  hK~ is twice continuously 

differentiable. Then, the mixed area measure of K 1 , . . . ,  K,~-I has a continuous 

density s ( K 1 , . . . ,  Kn-1 ,  ") with respect to the Lebesgue measure on S n - l ,  the 

mixed discriminant of the second differentials of hK~. We write sj(K, u) for 

s(K;j, D~; n - j - 1, u). It  follows that  

(7) 

/s~-I hgl(u)s(K2'K3'""K~'u)du= /Sn-1 hg2(u)s(Kl'K3'""Kn'u)du" 

In particular, for i = 1 , . . . ,  n - 1 we have 

(s) Wi(K) ~- -nl ~s,,-1 Sn-i(K,u)du = -nl ~s,~-1 hK(U)sn-i-l(K,u)du. 
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2.5. Let f be a real function on Rn\{o}. We write f for the restriction of f to 

S n-1. If F is defined on S n - l ,  the radial extension f of F to N~\{o} is given by 

f(x) = F(x/Ixl). If F is a twice differentiable function on S n-l,  we define 

(9) AoF = (/~f) and VoF = (V f), 

where f is the radial extension of F.  The operator Ao is usually called the 

LaplaceBeltrami operator, while Vo is referred to as the gradient. As a conse- 

quence of Green's formula we have 

(10) fs,~_I FAoG = /sn_I GAoF = - L,,_I(VOF) . (VoG ). 

For more details we refer the reader to [Gr]. 

2.6. If K is an origin symmetric convex body in IR n, then K induces a norm 

II" NK on N n in a natural  way. We shall write XK for the normed space with 

unit ball K,  and K x  for the unit ball of X. The polar body of K is defined by 

IIX[lgo = maxveK I(x,y}l = hK(x), and will be denoted by K °. 

We consider the average 

M(K) =/s,~_, IlxilKa(dx) (11) 

of the norm ]1" IlK on S n-l,  and define M*(K) = M(K°).  
If K and L are bodies in IR n, their multiplicative distance d(K, L) is defined 

by 

(12) d(K, L) = inf{ab : a, b > 0, K C bL, L C_ aK}. 

The Banach-Mazur  distance between XK and XL is 

(13) d(XK,XL) = inf{d(K, TL)l T • GLn}. 

Whenever we write (1/a)lx I < IIXlIK < blxl, we assume that  a, b are the smallest 

positive numbers for which this inequality holds true for every x • R ~. In 

particular, we then have d(K, Dry) = ab. 
Finally, we denote by Gn,k the Grassmannian of all k-dimensional subspaces 

of R ~, equipped with the Haar probability measure vn,k. We write IKI for the 

volume of K ,  and wn for the volume of the Euclidean unit ball. The letters c, d,  C 

etc. are reserved for absolute positive constants. 
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3. M i n i m a l  m e a n  w i d t h  

Let K be a convex body in R n (without loss of generality we may assume that  

o C intK).  The m e a n  w i d t h  w(K) of K is the quantity 

(1) w(K) = 2 f hK(u)a(du). 
Js n - - 1  

This is equal to 2M*(K) in the symmetric case. From 2.3 we see that 

l f s  hK(u)du = w~ ~s hK(u)a(du), Wn_ (K) = o - ,  (2) 

hence, 

(3) w(K)  = 2 W n - I ( K )  

O)n 

We say that  K has m i n i m a l  m e a n  w i d t h  if w(K) <_ w(TK) for every T C SLn. 

This notion was heavily used in the literature under a different name: K has 

minimal mean width if and only if the ~-ellipsoid of K ° is a multiple of Dn [FT]. 

Our purpose is to find necessary and sufficient conditions for a body K to have 

minimal mean width. We assume for simplicity that hg is twice continuously 

differentiable (we then say that K is s m o o t h  enough) .  

A smooth enough convex body K in R n has minimal mean width T H E O R E M  3.1: 

if and only if 

(4) 2 ~ _ ,  (VhK(u),Tu)a(du) = trTw(K)n 

for every T E L(~n). Moreover, this minimal mean width position is unique up 
to an orthogonal transformation. 

Proof: Assume first that K has minimal mean width. Let T E L(R '~) and ¢ > 0 

be small enough. Then (I + eT)*/[det(I + eT)] 1/n is volume preserving, and this 

means that  

(5) ~ . _ ,  hK(U + ~ru)a(du) > [det(I + ~T)] 1/'~ Js.- '  f hg(u)a(du). 

Since hK(u + ~Tu) = hI,:(u) + ~{VhK(u),Tu) + O(e 2) and 

t rT  
[det(I + eT)] 1/n = 1 + e + O(e2), 

n 

letting E --40 + we obtain 

(6) 212 ,_ ,  (VhK(u),Tu}a(du) > trTw(K).n 
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Replacing T by - T  in (6) we see that there must be equality in (4) for every 

T e L(R~). 

Conversely, assume that (4) is satisfied and let T C SLn. Up to an orthogonal 

transformation we may assume that T is symmetric positive-definite. Then, 

(7) w(T~:) = 2 [ hTK(U)a(du) = 2 f hK(T*u)~(du). 
n 1 J S - , ~ - 1  .Is 

It is a known fact that ~hK(u) is the unique point on the boundary of K at 

which u is the outer normal to K (see [Sch], p. 40). In particular, VhK(U) C K, 
which implies 

(8) (VhK(u), z> < hK(z) 

for every z C ]K ~. Therefore, by (7), (8) and (4) we get 

(9) w ( T g )  > 2 ~ _ ~  <VhK(U), T*u>a(du) = trT*n w(K) > w(K). 

This shows that  K has minimal mean width. Moreover, we can have equality in 

(9) only if T is the identity. This proves uniqueness of the minimal mean width 

position up to U E O(n). | 

Consider the measure Ug on S n-1 with density hg with respect to a. We shall 

prove that  a smooth enough convex body K has minimal mean width if and only 
if ~g is isotropic. 

LEMMA 3.2: 

(10) 

Then, 

(11) w(K) 
2 

for every ~ E S n- 1. 

Let K be a smooth enough convex body in •n. We define 

I (o1 = 0 e S n - 1  

- -  + IK(O) = (n + 1)/s~-~ hK(U)(U,O>2a(du) 

Prod: Let 0 E S n - l ,  and consider.the function f(x) = (x,0>2/2. 
computation shows that  

(12) (Vo])(u) = (u, O>O - (u, O>2u 

and 

A direct 

(13) (Ao])(u) = 1 - n<u, 0} 2. 
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Since hK is positively homogeneous of degree 1, we have 

(•offK)(u) = VhK(u) - hK(u)u and hK(u) -~ (VhK(u), u>, u • S n-1. 

Taking into account (12) we obtain 

(14) ((Vo])(u) ,  (VohK)(U)> = <VhK(u), O>(u, O> -- hK(u)<u, 0> 2. 

Integrating on the sphere and using Green's formula (see 2.5), we have 

(15) IK(O)- ~,,_lhK(U)<U,O>2a(du) = - ~ , , _  hK(U)(Ao/)(u)a(du), 

which is equal to 

w(K) +nJs  hK(U)<U,O>2a(du) 
n - 1  

by (13). This proves (11). | 

• THEOREM 3.3: A smooth enough convex body K has minimal mean width if 
and only if 

(16) fs~-I hg(u)(u,O}2a(du) _ w(K)2n 

for every 0 • S '~-1 (equivMently, if VK is isotropic). 

Proof: It  is not hard to check that  (4) is true for every T • L (~" )  if and only if 

(17) IK(O)*= w(K) 
2n 

for every 0 • S n-1. The result now follows from Theorem 3.1 and Lemma 3.2. 
| 

Remark: The smoothness assumption in Theorem 3.3 is not really needed. As- 

sume for example that  K is any convex body for which v g is isotropic. Given 

E > 0, we may approximate K by a smooth body K~ so that  IKE (0) is up to 

constant on S '~-1. If Tc(K~) has minimal mean width for some symmetric and 

positive T~ • SL,~, we easily check from (9) that  t rT  < (1 + O(~))n, and the 

stability of the arithmetic-geometric means inequality implies that  T~ is close to 

the identity. Passing to the limit as E -+ 0 + and taking into account the fact 

that  Tc(K~) has minimal mean width, we see that  K has the same property. The 

other direction can be treated in a similar way. 

The fact that  (4) and (16) are linear in K has the following immediate 

consequence: 
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COROLLARY 3.4: Let K1 and K2 be smooth enough convex bodies in Rn. 
(i) If K1 and K2 have minimal mean width, then their Minkowski sum K1 + K2 

has also minimal mean width. 

(ii) If K l  and K1 + K2 have minimal mean width, then K2 has also minimal 
mean width. 

Proof: Obvious from Theorem 3.1 or 3.3, since hK,+K2 = hK, + hK, and 

w ( K l +  K2) = w(K1) + w(K2). I 

In the symmetric case, it is a well-known fact [L], [FT], [Pill that if W has 
minimal mean width then M(W)M*(W) 5 clogd(Xw,e;). As an application 

of this estimate and of Corollary 3.4 we obtain: 

THEOREM 3.5: Let 1 1  . I( be a norm on Rn and assume that its unit ball K has 

the property M(K)  < M(TK) for every T E SL,. Then, for every X E (0, I) ,  

there exists a [(I - X)n]-dimensional section K n E of K such that 

where c > 0 is an absolute constant. 

Proof: Without loss of generality we may assume that M(K)  = 1 and X < 112. 
Let to be the smallest integer t for which l ~ g ( ~ ) ( b M * ( K ) )  <_ 2 (where log(t) denotes 

the t-th iterated logarithm). The Low M*-estimate [MI], [PT] , [Go] implies that, 

for some absolute constant 6 > 0, 

11x11 2 M* (K) I x 1  
for all x E Eo or x E E:, where Eo is in a subset Lo of G,,J(~-~-~,,~),I of measure 
greater than p(X, n,  to) = 1 - clexp(-cz2-to An), and cl, c2 > 0 are absolute 
constants. 

Consider the orthogonal transformation U = U(Eo) = PE,, - PE;, Eo E Lo. 
Then, 

for all x E Rn. Define a new body K1 = Kl(E0) by K; = (KO + U*K0)/2. 

Then, by Corollary 3.4, Ki' has minimal mean width equal to M(K1) = 1. It 
follows that 

(21) M*(Kl)  = M(K1)M*(K1) 5 clog 
(-M*(K)~) 

6 A  
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Observe that IIxiIK = IIxilKdEo) on E0, for every E0 E L0. 

We now iterate this step: assume that Li C Gn,[(1-2-~o+'~)n],Ei E Li, and 

K i + l ( E 0 , . . . ,  Ei), i = 0 , . . . ,  s - 1 have been defined and satisfy the following: 

(i) (K~+I) ° has minimal mean width, and M(Ki+I)  = 1. 

(ii) M*(Ki+I)  _< c l o g ( ~ M * ( K i ) b / t ~ v / ~ ) .  

(iii) IIxliK~+~ = IixliK~ . . . . .  IIxI[, for all x E Fi = Eo ~ . . . A Ei. 
We apply the Low M*-estimate to Ks, and find Ls C Gn,[(1-2-~o+~),~] with 

measure p(A, n, to - s) such that 

5 v / ~ t o  -* 
(22) Olxl _> II IIK  ___ M*(K,) Ixl 

on Es and on E { ,  for every Es E Ls. If E ,  E Ls, we define Ks+l by Ks°+l = 

(zoo + u*(Es)KD/2. Then, 

(23) 

on R n, and 

(24) 

~ ~to--S 
blxl _> > v M*(Ks)Ixl 

IIXl lKs+,  = IIZIIK, = . . . .  Ilxll 

for every x C Fs -- E0 M ..- N Es. This means that 

(25) d ( g  n Fs, D,~ N Fs) <_ 5V/2t°-s+l /AbM*(Ks). 

We stop the procedure when s = to. Note that if (Eo, E l , . . .  ,Eto) is a sequence 

as above, we have dimFto _ (1 - A)n. Also, since each (Ks) ° has minimal mean 

width, exactly as in (21) we get 

(26) M*(Ks+,) <_ clog ~ 5v/~ ] ,  

and this implies that M*(Kto) <_ Clog(b/x/~). By (25), we have 

d(KNFto,D,~MFto)<C b _  --~ log ( b )  . I 

Theorem 3.5 should be compared to an analogous result for the M-position: In 

[MSch2] it is proved that if K is in M-position of order a > 1/2, and if there exist 
1 t t orthogonal transformations U1,. . .  ,Ut such that -i }-~i=1 Ui K° is c-equivalent 

to a ball, then for every A E (0, 1) there exists a subspace F E G~,(1-~)n such 

that  d(K N F, Dn N F) < C(t, ~,, c). We can now show that the same is true for 

the minimal mean width position: 
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COROLLARY 3.6: Let ][. [[ be a norm on ~n and assume that its unit ball K has 

the property M ( K )  ~_ M ( T K )  for every T E SLn. Assume further that for some 

t orthogonal transformations U I , . . . ,  lit and for some 0 < r, C < oo, 

t 
1 

(27) rlxl _< IIU xll _< Cdxl 
i = 1  

for all x EtR ~. Then, for every A E (0, 1), there exists a [(1 - A)nl-dimensional 

section K n E of K such that 

d (K N E ,  Dn OE)  < cC--~ log ( 2 C x / t ~  
_ 

L e m m a  2.1 f rom [MSch2] and (27) imply tha t  

b(K) = m a x  [Ixl[ < Crv~. 
9 ~ S  n - 1  

(28) 

Proof." 

(29) 

Since M ( K )  > r, we have 

(3o) 

T h e  result  is now a consequence of Theorem 3.5. 

b(K----L < cv% 
M ( K )  - 

I 

An inspect ion of the  a rgument  we used for Theorem 3.5 shows tha t  the s ta te-  

ment  holds t rue  for a r andom [(1 - A)n]-dimensional section of K.  This  allows a 

"global" reformula t ion  of Corol lary 3.6: 

COROLLARY 3.7: With the same hypotheses as in Corollary 3.6, there exists one 

orthogonal transformation U such that ,  for some r I > O, 

(31) rllxl < [Ixll + l[Ux][ _< r 'Cv~log(2Cv~)lx[ 

for a11 x E ]I~ n • I 

The  example  of X = g~/1° • g~/10 f rom [MSch2] shows tha t  such a s t a t emen t  

cannot  hold in general.  

Let  t (K)  be the smallest  integer t for which there exist or thogonal  t rans forma-  

t ions U 1 , . . . ,  Ut such tha t  

t 
M ( K )  1 

E ][Uix[[ < 2M(K)Ix] z Ixl<  
i = 1  

for all x E W ~. In  [MSch2] it is shown tha t  t (K)  ~- (b /M(K))  2. We will prove 

below an "isomorphic" version of this fact for bodies in g-position. We fix s E 
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{ 2 , . . . ,  t ( K ) }  and ask how close to Euclidean can a norm IIxll~ = ! E S = l  IIUixll, 
8 

Ui E O(n) be. More precisely, let gK(s) be the smallest  A > 0 for which there 

exist r > 0, m _< s, and U 1 , . . . ,  Um c= O(n) satisfying 

1 m 
rpxl < m IIU xll < TAIxl, x e R 

i=1 

From L e m m a  2.1 in [MSch2] (see also the proof  of Corol lary 3.6), we must  have 

b(K) < r A v ~  < M(K)Av/-~. This shows tha t  

(32) > 

We shall show tha t  if K ° has minimal  mean width (if K has minimal M),  then  

this es t imate  is sharp:  

THEOR.EM 3.8: Let I1" II be a norm on R n such that its unit ball K satisfies 
M(K) < M(TK),  T e SLn. Then, 

(33) C l ~  ) ~ gK(S) ~ c2 t ( ~ l o g ( ~ ) ,  

where cl,  c2 > 0 are absolute constants. 

Proof'. Let s E { 2 , . . . , t ( K ) } ,  and set b = b(K), M = M(K). Following the 

proof  of T h e o r e m  2 in [BLM], one can check tha t  there exist s l  = Is/2] and  

U1,...,Us, e O(n) such tha t  

(34) I[xlls, := - -  IIU~x[I <_ c - -~ lx  I <_ c' Ixl 
Sl i=1 

for all x E 1R n. Let  K1 be the unit  ball of II "l]s, and set bl = b(K1), M1 -- M(K1). 
Since M1 = M ,  (34) implies tha t  

(35) t(K1) <_ c"t(K)/s. 

Observe  t h a t  K1 has minimal  M,  therefore we can apply  Corollary 3.7 with C --- 4 

and t = t(K1) to find r > 0 and V E O(n) such tha t  

(36) rlx I <_ IIxlls, + ItVxll~, <_ c ' " r ~  log(2t(K1))lxl 

for all x E ~'~. Set t ing U~l+i = UiV, i = 1 , . . .  , s l ,  and taking into account  (35) 

we conclude the proof. | 
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Remark: Let k(K) be the largest integer k for which a random k-dimensional 

central section of K is 4-equivalent to Euclidean. In [Msch2] it is proved that  

1 ~n <_ t(K)k(K) <<_ Cn, 

where C > 0 is an absolute constant. Having this duality in mind, one may view 

Theorem 3.8 as a global analogue (for bodies with minimal M) of the isomorphic 

version of Dvoretzky's  theorem proved in [MSch3] (see also [GGM]): There exists 

a constant c > 0 such that,  for every k _> clogn,  every n-dimensional space K 

has a k-dimensional subspace F with d(F, [~) < cx/k / log(n/k). 
Let us also mention the following common property of the M-posit ion and 

the minimal mean width position: If both a/M* and b/M are bounded by some 

constant C, then the space is f (C)- isomorphic to [~. This is proved in [MSch2] 

for the M-position, and follows from Pisier's inequality 

(37) MM* < clog(ab) < clog(C2MM *) 

for the minimal mean width position. The space X = [1/2 ® [~2 shows that  the 

position of the unit ball is crucial for this statement as well. 

We close this section with a variation of the minimal mean width position: 

Consider a symmetric convex body K in Rn, and the problem of minimizing 

M(TK)M*(TK) over all T C SLn. Repeating the procedure of Theorems 3.1 

and 3.3 we obtain the following condition for the minimum position: 

THEOREM 3.9: Let K be a symmetric convex body in R n, and assume that 
M(K)M*(K) < M(TK)M*(TK) for every T E SLn. Then, 

(38) M n 1 I [ul lK(u'O)2~(du)  = - i f :  ,,-1 I lu[ lg°(u'O)2'~(du)'  

for every 0 C S n-1. 

Proo[: Without  loss of generality we may assume that  K is smooth enough. 

Let R E L ( ~  n) and E > 0 be small enough, and w r i t e T  -1 = I + s R .  Then, 
oo k k k *  T* -- (I+eR*) -1 -- I + ~ ' k = l ( - 1 )  c ( R )  , and our assumption about  K takes 

the form 

(39) M(K)M*(K) <_ fs~-' Ilu+eRultKa(du) ~ - ~  tlu-eR*UllK°~(du)+O(e2)' 

which implies 

(40) 

MM* < (M +~ fsn_ (VhKo(u),Ru>) ( M * - ~ n _  (VhK(u),R*u))+O(E2). 
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Letting e --+ 0 + and replacing R by - R ,  we have 

l f s  1 f s  (41) ~ (Vhgo (u), Ru)cr(du) = - -  (VhK (u), R*u)a(du) 
n--I M* n--1 

for every R C L(R~). Using (40) with Ro(x) = (x,O)O, 0 e S n-l ,  we get 

1 1, 
(42) -~ ~n_1(VhKo(U),O)(u,O)a(du)= ~ ~,~_i(VhK(u),O)(u,O)a(du) 

for every 0 E S n-1. Taking into account Lemma 3.2, we conclude the proof. 
| 

We do not know if (38) implies the minimality condition of Theorem 3.9 

(nevertheless, we find (38) quite appealing, since it demonstrates once again 

the deep relation between a body and its polar). 

4. Q u e r m a s s i n t e g r a l s  and  v o l u m e  p r e s e r v i n g  t r a n s f o r m a t i o n s  

We say that  a convex body K min imizes  Wi if Wi(K) < Wi(TK) for every 

volume preserving linear transformation T. Since aWl(K)  = 0(K) ,  a body K 

minimizes W1 if and only if it has minimal surface area. Also, since 2Wn-1 (K) = 

w~w(K), a body K minimizes W~-I if and only if it has minimal mean width. 

Our purpose is to find necessary and sufficient conditions for a convex body K 

to minimize Wi, i = 1 , . . .  , n -  1. We first show that such a body is a solution of 

a much more general problem: 

PROPOSITION 4.1: Let i = 1, . . .  , n -  1, and assume that the convex body K 
minimizes Wi. Then, 

(1) V(T1K, . . .  ,Tn-iK,  Dn;i) >_ VVi(K) 

for any T1, . . . ,  T~-i C SLn. 

Proof." We have Wi(TjK) > Wi(K), j = 1 , . . .  ,n  - i. As a consequence of the 

Alexandrov-Fenchel inequality we see that 

(2) V(TIK, . . . ,Tn_~K,D~;i )  > Wi(TIK)I/n-~.. .Wi(T,~_iK) 1/n-~, 

and this proves our claim. | 

The arguments we used for the surface area and the mean width apply to every 

quermassintegral and provide necessary conditions for the minimal position: 
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PROPOSITION 4.2: Assume that K is smooth enough and minimizes Wi. Then, 

(3) /s~-~ <VhK (u), Ru> dS~_i_ 1 (K, u) = [trR] Wi (K) 

for any R C L(R ~). 

Proo~ Let T E L(]~ ~) and ¢ > 0 be small enough. Then, (I + eT)/[det(I + 
cT)] 1/n is volume preserving. Therefore, 

(4) [det(I + ET)](~-i)/nW~(K) <_ V((I + ¢ T ) g ; n -  i, Dn;i). 

Since (I + ET)K C_ K + cTK, using the monotonicity of the mixed volumes we 

get 

[det(I + cT)](~-i)/~Wi(K) <_ V(K + ETK; n - i, D~; i). (5) 

We have 
n - i  

[det(I + ~T)] (n-i)/n = 1 + e trT + O(¢2), 
n 

and linearity of the mixed volumes with respect to its arguments shows that  

V(K + ~TK; n - i, Dn; i) = Wi(K) + (n - i)~V(TK, K; n - i - 1, D~; i) + O(~2). 

Letting ~ --+ 0 + we see that  

t rTwi (K)  <_ V(TK,  K;n  - i -  1, Dn;i) = 1 f s  hT~:(u)dS~_i_l(K,u). 
(6) n n n-1 

Now, let R 6 L(~  n) and set T* = I + e R  where ~ > 0. Since hTK(U) = 
hK(T*u) = hK(U + cRu), we get 

(7) Wi(K) +etrRWi(K)n ~- ! n-1 hK(u+eRu)dSn_i_l(K,u).  

But, hK(u + ~Ru) = hK(u) + s(VhK(u),Ru) + O(e2), so letting e --+ 0 + and 
using (2.5), we have 

(8) t rRwi(K)  < 1 / 8  n - n ~_(VhK(u),Ru)dSn_i_l(g,u) .  

Replacing R by - R  we get the reverse inequality, therefore 

(9) [trR]Wi(g) = fs~-~ (Vhg(u), Ru)dSn-i-1 (g ,  u) 

for every R e L(Rn). | 
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PROPOSITION 4.3: Let i = 1 , . . . ,  n - 1. It" a convex body K in R n minimizes 
Wi, then Sn-i(K, ") is isotropic. 

Proof." Assume that K minimizes Wi. For every U C SL~ we have 

(10) Wi(UK) = V ( K ; n -  i, U-1Dn; i) > Wi(K). 

Let T E L(]~ n) and ~ > 0 be small enough. Then, U -1 = (l+cT)/[det(lTET)] l/n 
is volume preserving, therefore 

(11) V(K; n - i, nn + ¢TDn; i) > [det(I + eT)]i/~Wi(K). 

Observe that the right hand side is 

Wi(K) + i¢trT W~(K) + O(e2), 
n 

while the left hand side is W~ (K) + ieV(K; n - i, D~; i - 1, TD~) + O(c 2). Letting 

--~ 0 + and, taking into account (2.3), we get 

(12) In ~ - 1  hTD.(u)dS~_~(K,u) > trT 

for every T C L(II(~). Let R E L(]R ~) and set T* = I + eR. We have hTD~(U) -~ 

IT*ul = lu + eRu I = 1 + g(u, Ru) + O(~2), so (12) becomes 

(13) j(s~_ {1 +e(u, Ru) +O(~2)}dS~_i(K,u) >_ nWi(K)+cItrR]Wi(K ). 

Letting e --+ 0 +, using (2.6) and replacing R by - R  we conclude that 

(14) is .-1 (u, Ru)dSn_i(g, u) = [trR]Wi(K) 

for every R E L(~'~). This shows that S~_~(K, .) is isotropic. | 

In order to proceed we need to introduce some terminology and notation. If A is 

a selfadjoint linear transformation of R n, we denote by sj (A) the j - th  elementary 

symmetric function s j ( h l , . . . ,  An) of the eigenvalues ~1 , . . . ,  )~. of A: 

(15)  5(A) = 
l<k i< . . . ( k j (_n  

The j - th  Newton operator of A is defined by 

(16) Tj(A) = sj(A)I - sj_I(A)A +. . .  + (-1)J A j. 

We set so(A) = 1 and To(A) = I. We also agree that  Tj(A) = 0 if j < 0. 

Some known properties of sj (A) and Tj (A) are listed in the Proposition below 

(see e.g. Reilly [Re]): 
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PROPOSITION 4.4: Let A ¢ L(R n) be selfadjoint, and assume that it has matrix 

(akl) with respect to some basis of R ~ . Then, Tj (A) is selfadjoint and 
v-~ ckl . . .k j  

(i) s3(A) = ~ Z, ozl...,, a ] ~ l ~ l  , *  .ak, lj. 
ckl. . .kdk (ii) [Tj(m)]kt = ~. k ,  ot,...ljt ak, t~ ' "ak ,  tj. 

(iii) tr(Tj(A) o A) = (j + 1)Sj+l(A). 

(iv) Tj(A) = s j (A) I  - Tj- I (A)  o A. 

(v) tr(Tj(A)) = (n - j ) s j (A) .  
,~k~ ...k3 

Here, we denote by "z~...Ij , 1 < j <_ n, the Kronecker symbol which has the 

value +1 (respectively, - 1 )  if  k l , . . .  ,kj  are distinct and (/1, . . .  , l i)  is an even 

(respectively, odd) permutation of ( k l , . . . ,  kj). If  not, then the symbol takes the 

value O. | 

We will also use the following consequence of Green's formula (see [Fi]): 

PROPOSITION 4.5: Let f: R"\{o} + R and F: Rn\{o} --+ R n be homogeneous 

functions of degree p and q respectively. Assume that V f  and divF are continu- 

ous. Then, 

(lr) ~.-~f(u)divF(u)a(du) =(P+q+ n-1) f sn-l{f(u)F(u)'u}a(du) 
- ( W ( u ) ,  Y ( u ) > ( d u ) .  . 

Note that Lemma 3.2 is a special case of Proposition 4.5: choose f ( x )  = hg(x)  

and F(x)  = (x, 0}0. 

Let K be a convex body in R n, and assume that hK is a C3-function. For 

every x C R'~\{o} the Hessian 7/x := (O~lhK) of hK defines a selfadjoint linear 

transformation of ]~n. If u C S n - l ,  then sj(7/~) = s j (K,u)  (for simplicity we 

will write sj(u)). In this context, one has the following additional properties of 

the Newton operator Tj(7-/~) (see [BH]): 

PROPOSITION 4.6: Assume that hK has continuous partial derivatives of order 
three in ]~ \{o} .  Then, 

(i) (j + 1)Sj+l(X) = div[(Tj(7"l~))(VhK(x))], j = 0 , . . .  ,n  - 2. 

(ii) 7-/x(x) = o, (Tj(Ttx))(x) -= sj(x)x.  1 

Combining the above results we obtain the following: 

THEOREM 4.7: Let K be a convex body in R '~, whose support function hK is 

C 3. Then, for every j = 0 , 1 , . . . , n -  2 and anyO E S n- l ,  we have 

(18) Jsf-~ [(n + 1 - j )hn(u)s j (u )  - (j + 1)sj+l(u)](u, O)2a(du) 
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= 2fSn_, ((Tj(7-l~))(VhK(U)),O)(u,O}a(du). 

Proof." Let f (x)  = (x, 0) 2. By Proposition 4.6(i), 

(19) 

~ _l (j + 1)Sj+l(U)(u,O}2o'(du)= ~,~_, f(u)div[(Tj(7-l~)(VhK(u)))]a(du). 

Since f and Tj are homogeneous of degree 2 and - j  respectively, Proposition 4.5 

shows that this last integral is equal to 

(20) 

( n + l - j )  fs~_ (Tj(VhK(u)),u)(u,O)2a(du)-2 ~ . _  (Tj(VhK(U)),O)(u,O)a(du). 

To complete the proof, observe that since Tj is selfadjoint by Proposition 4.6(ii) 

we have 

(Tj(Vhg(u)),u) = {Vhg(u),Tj(u)l = sj(u)(VhK(u),u) = sj(u)hK(u). | 

Note first that  Theorem 3.3 is a consequence of Theorem 4.7: When j = 0, (18) 

takes the form 

(2t) (n + 1) fs~-~ hK(u)<~, O)~o(d~) 

= £~_ <u, 0)~dSl (K, u) + 2 £~_ <VhK(~),0/<~, 0)~(~u). 

By Theorem 3.1 and Proposition 4.3, theJas t  two integrals are independent of 

0 E S '~-1, hence VK = hKda is isotropie. 

We now consider the ease j = 1, which corresponds to the quermassintegral 

Wn-2: 

THEOREM 4.8: Let K be a convex body in R ~, whose support function 
hK is C 3. If K minimizes Wn-2, then the measures s2(u)a(du) and 
[hK (u)sl (u) + IVhK (u)[2]a(du) are isotropic. 

Proof: We have Tt(7-l,)(VhK(u)) = sl(u)Vhg(u) -7 / , (VhK(u) ) .  
Theorem 4.7 implies that for every 0 E S n - l ,  

(22) 

Then, 

n fsn-1 hK(U)Sl (u)(u, 0) 2 a(du) + 2 fs~-, (7"/~ (Vhg (u))' O)(u, O)a(du) 

= 2 £~_(,~,ol2dS~(t,:,~) + 2 fs~_IVh,:(u),OlI~,O>dSl(K,~). 
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Assume that  K minimizes Wn-2. By Propositions 4.2 and 4.3, the expression on 

the right hand side of (22) does not depend on 0. On the other hand, it is easy 

to check tha t  

(23) 2nu(VhK(u) )  = V ( IVhK(U)?) .  

Applying Proposition 4.5 with F(x)  = (x, 0}0 and f ( x )  = ]Vhg(x) l  2, we get 

(24) L--' IVhK( )12 (du) :n  o-1 IVhK(u)?( 'O)2 (du) 

- 2 JSn-1 (7-lu(VhK(U)), O}{u, O)a(du). 

Inserting this into (22) we see that  

~Sn_, [81 (u)hg (u) + [VhK (u)12] (u, O}2a(du) 

does not depend on 0. This completes t-he proof. 1 

Using the same tools one can obtain analogous necessary isotropic conditions 

for the position which minimizes each quermassintegral. It  is an interesting ques- 

tion to determine a set of necessary and sufficient isotropic conditions for the 

position minimizing Wi, i = 2 , . . . ,  n - 2. 

5. J o h n ' s  T h e o r e m  

A classical result of F. John [Jo] states that  d ( X , ~ )  < x/~ for every 

n-dimensional normed space X, where ~ is Euclidean space, and d stands for the 

Banach-Mazur  distance. One comes up with this estimate while studying the 

following extremal problem: 

Let K be a symmetr ic  convex body in R ~ . Maximize IdetTI over all T : ~ -+ 

X -- X K  with IITII = 1. 

If To is a solution of this problem, then ToDn is the ellipsoid of maximal volume 

which is inscribed in K.  One can easily establish existence and uniqueness of 

such an ellipsoid. In the spirit of our discussion, we may equivalently formulate 

the problem as follows: 

Let K be a symmetr ic  convex body in N n. Minimize liT : e~ - +  XKI[ over all 

volume preserving transformations T. 

We shall see that  our standard variational argument provides all the available 

information about  this "maximal volume ellipsoid position". In particular, one 
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m a y  na tura l ly  interpret  the well-known John ' s  representat ion of the  ident i ty as 

an isotropic condition. 

To this end, assume tha t  the identi ty m a p  I is a solution of the problem,  and 

normal ize  so t ha t  

(1) I[I: g~ ~ XK[[ = 1 = min{[lT: g~ --+ XKI[ :  IdetT[ = 1}. 

This  means  tha t  the Euclidean unit  ball Dn is the maximal  volume ellipsoid of 

K .  Our  first result  provides a necessary "trace condition" on K:  

THEOREM 5.1: Let K be a smooth enough symmetric convex body in ]~n and 

assume that D~ is the maximal volume ellipsoid of K.  Then, for every T • L (~  n) 

we can find a contact point x of K and Dn such tha t  

t r T  
(2) (x, Tx) > - -  

n 

Proof: Let S • L(R~).  

of K and D~ such tha t  

We shall first show tha t  there exists a contact  point  x 

t rS  
(3) IrS lJ  > - -  

n 

Let  ¢ > 0 be  small  enough. From (1) we have 

(4) I[I + vS : g.~ --> XKI[ :> [det( I  + gS)] 1/n = ~ ~- t r S  + 0(~2).  
n 

Choose any  xe e S n-1 such tha t  Ilxe + ~Sx~IIg = III + ¢Sll. Since D~ C K ,  we 

have Ilxellg < 1. Therefore,  combining (4) with the t r iangle inequali ty for I1" IlK 

we see t ha t  

t rS  
(5) IlSx IIK > + o(e).  

n 

By compactness ,  we may  find x • S ~-1 and a sequence Em -+ 0 such tha t  

x~m -+ x. By  (5) we obviously have 

t r S  
IIS llK > - -  

n 

On the o ther  hand,  

(6) Ilxlt/~ = l im IIx6m + emSx~ mIlK = lim tlI + cmSII = IlIII = 1. 
m--}oo m---}c~ 

This  shows tha t  x is a contact  point  of K and D,~, which proves (3). 



Vol. 117, 2000 ISOTROPIC POSITIONS OF CONVEX BODIES 51 

Now, let  T E L ( R  ~) and wri te  S = I + ~T, c > 0. We can find x~ such t h a t  

]{X~[{g = ]x~{ = 1 and 

(7) i{x~ + ¢Tx~II g >_ t r ( I  + ~T) _ 1 + c t r T  
n n 

We wri te  Ilxe + cTxEIIK = 1 + C(VIIXzlIK,TXe> + 0(C2), and from (7) we get  

t r T  
(V}Ix~IIK,Tx~> >_ -- + 0(~ ) .  

n 

Choosing  again  ~,~ -+ 0 + such tha t  x~.~ -~ x E S n- l ,  we see t h a t  x is a con tac t  

po in t  of K and Dn which satisfies 

t r T  
(S) (Vi{xl[g,Tx > > - -  

n 

Moreover,  since VIIxlIK is the  poin t  on the  b o u n d a r y  of K ° a t  which the  ou te r  

uni t  no rma l  is para l le l  to  x and  x is a contac t  poin t  of K and  Dn,  we mus t  have 

V{Ix]{K = x. This  proves the  theorem.  | 

F rom T h e o r e m  5.1 we can easily recover all the  well-known p roper t i e s  of the  

m a x i m a l  volume ell ipsoid:  

THEOREM 5.2: Let Dn be the maximal volume ellipsoid of K.  Then, K C 

Proof: Let  x C I~ n and  consider  the  m a p  Ty = (y, xlx.  By T he o re m 5.1, we can  

find a con tac t  po in t  z of K and  Dn such t ha t  

(9) <z, Tz> > - -  

But ,  

t r T  Ix{ 2 

n n 

(i0) (z, Tz> = (z,x) 2 <_ [[zI[~oIIX[[~ = [{xI[ ~. 

Therefore, [z{ < V~[[z}[K. This is equivalent to the assertion of the theorem. 
| 

Theorem 5.2 provides the estimate d(X, ~tr~) <__ ~ for the Banach-Mazur dis- 

tance from an arbitrary n-dimensional norrned space to/~. From Theorem 5.1 

we can also deduce the Dvoretzky-Rogers lemma: 
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THEOREM 5.3: Let Dn be the maximal volume ellipsoid of K.  There exist 

pairwise orthogonal vectors Yl , . . •, Y~ in R ~ such that 

( n  - i  + 1~ 1/2 --< IlYilIK < lYi[ = 1, i---- 1 , . . . , n .  
\ n / 

Proof." We define the yi's inductively. The first vector Yl can be any of the 

contact points of K and D~. Assume that Yl, . . .  ,yi-1 have been defined. Let 

Fi = span{y1, . . .  ,Yi-1}. Then, tr(PF± ) ---- n -- i + 1, and by Theorem 5.1 there 

exists a contact point xi such that 

n - i + l  
(11) IP<~-xil 2 = (xi, P<~xd >_ 

n 

It follows that  ]IPF, xill < IPF~Xil < v / ( i -  1)In. We set yi = PF;Xi/IPF~±Xil. 

Then, 

1/2 

(12) 1 lYil > IlYilIK >- (xi,Yi> iPF±Xi i >_ ( n  -- i + 1 
i \ ?% / 

Note that  the argument shows that for every k-dimensional subspace F there 

exists a contact point x of K and Dn such that IPFXl 2 = (x, PFx} >_ k/n.  

Finally, a separation argument and Theorem 5.1 give us John's representation 

of the identity: 

THEOREM 5.4: Let Dn be the maximal volume ellipsoid of K.  There exist 

contact points X l , . . .  ,xm of K and D,~ and positive real numbers A1, . . . ,  Ar~ 

such that 
m 

I = E ~ixi ® xi. 
i= l  

Proof." Consider the convex hull C of all operators x ® x, where x is a contact 

point of K and Dn. One can easily see that the assertion of the theorem is 

equivalent to I / n  E C. If this is not true, there exists T 6 L(R n) such that  

(13) (T, I / n )  > (x ® x, T) 

for every contact point x. But, (T, I /n}  = t r T / n  and <x ® x, T)  = (x, Tx) .  

Therefore, (13) would contradict Theorem 5.1. | 

Theorem 5.4 implies that  

(14) ~ ,~i(xi, 0) = = 1 
i=1 
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for every 0 E S "-1.  In our terminology, the measure # on S n-1 that  gives mass 

Ai to the point xi, i --- 1 , . . .  ,m, is isotropic. In this sense, John's position is an 

isotropic position. Conversely, following [Ba4] we have: 

PROPOSITION 5.5: Let K be a symmetric convex body in ]Rn which contains the 

Euclidean unit ball D n,  Assume that there exists an isotropic Borel measure # 

on S n-1 which is supported by the contact points of K and Dn. Then, D~ is the 

maximal volume ellipsoid of K.  

Proof: Let I[#[] = #(Sn-1)  and A C S ~-1 be the support of p. Define 

(15) L =  {y E Rn : I(x,y}l ~_ 1, x E A}. 

Since K C_ L, it clearly suffices to prove that Dn is the maximal volume ellipsoid 

of L. Let 

~2~ a -2  / v 1}, (16) E =  {y E R ~ : J iy, j),2 < 
j = l  

where {vh} is an orthonormal basis of R ~ and aj  > 0. Assume that  E C_ L. For 

every x C A we have 

-1/2 

(17) y(~) = ~<x, vj> 2 
\ J = '  / 

hence, I(x,y(x))l <_ 1 gives 

n 

(18) E a ~ ( x ,  vj}2 <_ 1, 
j = l  

Our hypotheses imply that  

(19) 

n 

Z . ~ ( ~ , v s ) v 5  e E c L, 
j = l  

x E A .  

j = l  j : l  II 11 n--1 

L~LI 5=1 

Using (18) and the Cauchy-Schwarz inequality we see that 

(20) ~ _ _  ~j (x, vj) 2 _< ~ (x, vA 2 (x, vj)2 
j=l  \ j = l  

1/2 

< 1  
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for every x E A. Then, (19) becomes 

(21) ~ a j  <_ n. 
j=l 

By the arithmetic-geometric means inequality we get r l  aj _< 1. That  is IE[ < 

]Dn]. Moreover, we can have equality only if all aj's are equal to 1, which shows 

that  D~ is the unique maximal volume ellipsoid of L. I 

Theorem 5.4 and Proposition 5.5 provide the following characterization of 

John's position: 

"Let K be a symmetric convex body in R ~ which contains the Euclidean unit 
ball D~. Then, D~ is the maximal volume ellipsoid of K if and only if there 
exists an isotropic measure # supported by the contact points of K and Dn." 

Let us discuss one more problem of the same nature: Let K be a symmetric 

convex body in R n and [[. [[ be the corresponding norm. Assume that (1/a)Ix[ <_ 
IIxI[ < b]x] for every x E ]R ~. It is clear that M(K)a(K) >_ 1, and we are 

interested in 

(22) min{M(TK)I T E GL, ,  a(TK) -- 1}. 

The condition a(TK) = 1 means that  T K  C_ Dn but there exist contact points 

of T K  and Dn. We then have the following condition for the minimum position: 

THEOREM 5.6: Let K be a symmetric convex body in R n satisfying a(K) = 1 
and M(K) < M(TK)  for every T E GL~ with a(TK) = 1. Then, for every 

0 E S '~-1 we can find contact points xl,x2 of K and D,~ such that 

n + l f s  (23) 1 + <x1,8> 2 <_ --M--- ~-1 IIuIIK<U'O>2a(du) -< 1 + <x2,8> 2. 

Proof: Let T E L(~  ~) and ¢ > 0 be small enough. Then 

T1 := (rain [ix + ETxH)(I + sT) -1 
S~-1 

satisfies a(T1K) = 1. Therefore, 

(24) fs~-I  [[u + eTu[[a(du) _> M(K) xes--~min [Ix + cTx[[. 

If we write [tu + cTu][ = HuH + ~(Vhgo(u),Tu} + O(¢2), we see that 

(25) fs~-~ (VhKo (u), Tu>a(du) + O(e) > M(K) mins . - ,  [[xe + eTx[[ - 1 
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Let  x~ be a point  on S " -  1 a t  which the min imum is a t ta ined.  If  x is a contac t  

point  of K and Dn, we must  have 1 + cllTl[ _> ]Ix + ~Tx[[ > I[x~ + eTx~[] > 
liz~ll - ellrl[,  where ][T[[ := l iT: e~ -4 XK[I. I t  follows tha t  

(26) 1 _< Hxel[ < 1 + 2¢11T]1. 

Since xe E S n-1 and I1" II -> ] I, (25) takes the form 

(27) fs'~-, (VhKo (u), Tu)a(du) + O(e) >_ M(K) Ize + ¢Tz,e [ - 1 

= M(K)[(x~,Tx~)+ O(e)]. 

Now, we can find a sequence c,~ -4 0 and a point  x E S '~-1 such t ha t  x~m -4 x. 

Le t t ing  m -+ cx~ in (27), we obta in  

fs.-~ (VhKo (u), Tu)a(du) >_ M(K)(x,  Tx). (28) 

Also, x E S ~-1 and using (26) we see tha t  [Ix[[ = limm I[x~m[[ = 1. T h a t  is, x is 

a contac t  point  of  K and Dn. Replacing T by - T  we find another  contac t  point  

x I of K and D,~ such tha t  

(29) ~ - 1  (Vh/(o (~), TUla(du) < M(K)(X', TX'). 

Choosing TO(x) = (x,O)O, 0 E S n-l, and applying L e m m a  3.2, we obta in  (23). 

t 

T h e  condit ion of the Theo rem shows in a sense tha t  the m i n i m u m  posi t ion 

of the  p rob lem is rich in contac t  points  with the c i rcumscr ibed ball. T h e  dual  

p rob lem of maximiz ing  M under  the condit ion b = 1 has exact ly  the same answer. 

6. M i n i m a l  s u r f a c e  a r e a  a n d  M - p o s i t i o n  

If K and L are convex bodies  in N n, we write N(K, L) for the covering number 
of K by L ( tha t  is, the min imum number  of t ransla tes  of L whose union covers 

K) .  If  [K I = IDol, we say tha t  K is in M-pos i t ion  (with pa rame te r  5 > 0) if 

(1) N(K, D,~) <_ exp(Sn). 

One can then  prove (see [MP2] for the non-symmet r ic  case) tha t  

(2) N(K, D,)  . N(D,~, K) . N(K  °, Dn) . N(Dn, K °) <_ exp(~ln) ,  
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where 61 = c6, and c > 0 is an absolute constant. Moreover, condition (1) is 

equivalent to 

(3) [K + On] 1/" < c]D~] 1/". 

This isomorphically defined position is the best representative of the affine class 

of a body in volume computations: this is mainly due to the fact that  reverse 

Brunn-Minkowski inequalities hold for bodies in M-position [M2]. 

We define a function f :  [0, +oo) ~ R by 

(4) f ( t )  = min{lTK + tD~ll T • SLn}. 

For every t > 0 there exists a volume preserving Tt such that  ]TtK + tDnl = f ( t ) .  

It  is clear that  UTt has the same property for every U • O(n). By (3) we see that  

T I K  is in M-position. This suggests that  M-position can be described as the 

solution of a minimum problem similar to the ones we discussed in the previous 

sections. 

We start  with the following observation: 

LEMMA 6.1: Let K be a convex body in ]~ .  Then, 

(5) ]K + tA1D~ + sA2Dn] >_ min{]K + (t + s)A1D~], ]K + (t + s)A2Dn[} 

for every A1, A2 E GL~ and t, s > O. 

Proof." It is an immediate consequence of the Brunn Minkowski inequality, since 

(6) 
8 

t ( g  + (t + (K + (t + s)A2D,~) 1 K + t A 1 D n + s A 2 D n  D s )A1Dn)+7 .  • 
t - i - 8  

THEOREM 6.2: Let K be a convex body in IR ~. Assume that 

(7) [K + tD~[ = f ( t )  

for some t > O. Then, K + tDn has minimal surface area. 

Proof." Let T E SLn. From Steiner's formula we see that  

(8) IT(K + (t - e )D,)  + eD, d - IT(K + (t - e)Dn)l 

= n e W I ( T ( K  + (t - e)D,~)) + 0(62). 
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By the continuity of W1 with respect to the Hausdorff metric, 

(9) O(T(K +tD~))  = n W I ( T ( K  +tD,O) = n lim W I ( T ( K  + ( t - ~ ) D n ) )  
c-~O + 

= lim [T(K + (t - E)D.) + cDn[ - IT(K + (t - e)Dn)l 
~--+0 + C 

= lim [ K + ( t - c ) D ~ + c T - 1 D n [ - [ K + ( t - e ) D ~ ]  
c-+0 + C 

Since IK + tD~[ = f ( t ) ,  Lemma. 6.1 implies that  IK + (t - e)D~ + eT-1Dn[ >_ 

IK + tDn I. Hence, 

(10) O(T(K + tDn)) >_ lirn ]K + tDn[ - IK + (t - ¢)Dnl = O(K + tD~). 
~--+0+ E 

This shows that  K + tD~ has minimal surface area. | 

Remark: It  is not hard to show that  

(11) f ' ( t )  --- O(TtK + tDn) 

for every t > O. It  follows that  for every t > s > 0 we have 

// // (12) O(TxK + xDn)dx >_ O(TtK + xD~)dx, 

with equality if s = 0. 

In the planar case, a convex body K has minimal perimeter (surface area) if 

and only if it has minimal mean width. Since ITtK + tD,~ 1 = f ( t ) ,  Theorem 

6.2 shows that  TtK  + tDn has minimal mean width and, using Corollary 3.4(ii), 

we see tha t  TtK has minimal mean width. Moreover, Tt is constant up to an 

orthogonal transformation. Tha t  is, the solution of Problem (4) is the minimal 

mean width position, independently of t :> 0: 

COROLLARY 6.3: A convex body K in ]~2 satisfies ]K + tDn] <_ ]TK + tDn] for 

every T E SLn and every t > 0 if and only if it has minimal mean width. | 

It  would be interesting to see if the minimal surface area position is an M-  

position in higher dimensions. This would provide an isometric description of 

the M-position. Observe that,  by Theorem 6.2, the limit of TtK as t --+ 0 + is the 

minimal surface position and, by Steiner's formula, the limit of TtK as t --+ +co 

is the minimal mean width position. 
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